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Abstract: Building on the five-dimensional constructions in hep-th/0601177, we provide

a unified description of four-dimensional N = 2 superconformal off-shell multiplets in pro-

jective superspace, including a realization in terms of N = 1 superfields. In particular,

superconformal polar multiplets are consistently defined for the first time. We present

new 4D N = 2 superconformal sigma-models described by polar multiplets. Such sigma-

models realize general superconformal couplings in projective superspace, but involve an

infinite tale of auxiliary N = 1 superfields. The auxiliaries should be eliminated by solving

infinitely many algebraic nonlinear equations, and this is a nontrivial technical problem.

We argue that the latter can be avoided by making use of supersymmetry considerations.

All information about the resulting superconformal model (and hence the associated hy-

perkähler cone) is encoded in the so-called canonical coordinate system for a Kähler metric,

which was introduced by Bochner and Calabi in the late 1940s.

Keywords: Superspaces, Extended Supersymmetry, Supersymmetric Effective Theories.

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep122007010/jhep122007010.pdf

mailto:kuzenko@cyllene.uwa.edu.au
http://jhep.sissa.it/stdsearch


J
H
E
P
1
2
(
2
0
0
7
)
0
1
0

Contents

1. Introduction 1

2. 4D N = 2 superconformal formalism 3

2.1 Superconformal Killing vectors 3

2.2 Superconformal projective multiplets: definition 5

2.3 Superconformal projective multiplets: Examples 7

2.4 Superconformal action 9

2.5 Projective gauge fixing 10

3. 4D N = 2 superconformal theories 11

3.1 Superconformal tensor and O(2n) multiplets 11

3.2 Superconformal polar multiplets 11

4. Reduction to N = 1 superfields 12

4.1 N = 1 decomposition of N = 2 superconformal Killings 12

4.2 N = 1 superconformal transformations 13

4.3 Extended superconformal transformations 14

4.4 Shadow chiral rotation 15

5. Non-superconformal case: N = 2 sigma-models on tangent bundles of

Kähler manifolds 15

5.1 Background material on N = 2 sigma-models 16

5.2 Putting the extended supersymmetry to work 17

6. Back to the superconformal case 21

A. N -extended superconformal Killing vectors 22

1. Introduction

Hyperkähler manifolds are known to be the target spaces for systems of 4D N = 2 hy-

permultiplets in the case of rigid supersymmetry [1]. In local supersymmetry, when the

hypermultiplets couple to N = 2 supergravity, their target spaces have to be quaternionic

Kähler [2]. Unlike Kähler metrics, both hyperkähler and quaternionic Kähler metrics are

difficult to construct explicitly. However, the results of [1, 2] imply that the existence of reg-

ular (i.e. superspace) techniques for formulating supersymmetric nonlinear sigma-models

with eight supercharges should be equivalent to a formalism to generate hyperkähler and

quaternionic Kähler metrics. This idea was one of the driving motivations in the 1980s to
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look for 4D N = 2 off-shell supersymmetric techniques, and the latter quest has resulted in

the creation of two powerful paradigms:1 harmonic superspace [3, 4] and projective super-

space2 [5 – 7]. The projective superspace approach is ideally suited for explicit construction

of hyperkähler metrics.

Remarkably, the problem of constructing arbitrary quaternionic Kähler metrics is

equivalent to that of generating hyperkähler metrics with special properties. As shown

first by Swann [12] (see also [13]), there exists a one-to-one correspondence between 4n-

dimensional quaternionic Kähler spaces and 4(n + 1)-dimensional hyperkähler manifolds

possessing a homothetic Killing vector (implying the fact that the isometry group includes

a subgroup SU(2) that rotates the three complex structures). In the physics literature,

such hyperkähler spaces are known as “hyperkähler cones” [15], and they turn out to be

the target spaces for 4D N = 2 superconformal sigma-models (see [14 – 16] and references

therein). Given a 4(n+1)-dimensional hyperkähler cone, the corresponding 4n-dimensional

quaternionic Kähler space is obtained by implementing the Swann reduction [12, 13]. At

the sigma-model level, this was elaborated in detail in [15].3

Thus, to generate arbitrary hyperkähler cones, it is sufficient to construct all possible

superconformal sigma-models described in terms of various off-shell realizations of the 4D

N = 2 massless scalar multiplet. So far, this has thoroughly been elaborated [15, 16] for

only the simplest off-shell realization — N = 2 tensor multiplet [18 – 20] (see [21] for a

detailed study of tensor multiplets in N = 2 supergravity). General couplings for N = 2

tensor multiplets were actually given in the foundational work on projective superspace [5],

and even earlier in [22]. As is known, the use of tensor multiplets allows one to generate

very restrictive couplings. At the same time, the most interesting multiplet in projective

superspace is the so-called polar multiplet [6, 7, 23], for it is believed to allow the most

general sigma-model couplings4 [6, 7]. The superconformal description of polar multiplets,

as well as general superconformal couplings for polar multiplets, have been given only

recently in the context of five-dimensional N = 1 supersymmetry [25]. The present paper

is aimed, in part, at extending the results of [25] to four dimensions.5

The main thrust of this paper is actually to address the following technical issue.

When realized in terms of N = 1 superfields, the polar multiplets involve an infinite tale

of auxiliary unconstrained superfields, along with two physical superfields. In nonlinear

1It was Rosly [9] who first realized, building on earlier ideas due to Witten [10], that the right superspace

setting for 4D N = 2 supersymmetric theories is isotwistor superspace R4|8
× CP 1 = R4|8

× S2 (following

the terminology of [11]). This superspace is called “harmonic” or “projective,” depending on the following

two prerequisites: (i) the supermultiplets selected to inhabit it; and (ii) the supersymmetric action principle

chosen.
2See [8] for a related construction in two dimensions.
3For the construction of quaternionic Kähler metrics from harmonic superspace, see [4, 17] and references

therein.
4The polar multiplet is the projective-superspace analogue of the q+-hypermultiplet in harmonic super-

space [3], see [24] for a detailed discussion of the relationship between these two approaches.
5Such an extension is very natural. But since the 5D superspace notation and the corresponding super-

conformal algebar F(4) [26], which were use in [25], are somewhat exotic, the 4D N = 2 implications of the

results in [25] do not seem to be transparent even for some experts.
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sigma-models, elimination of the auxiliaries requires solving an infinite set of algebraic non-

linear equations, and this is hard. We are going to demonstrate that this nontrivial problem

can completely be avoided by making use of powerful supersymmetry considerations. Con-

ceptually, this will be similar to the recent analysis given for the N = 2 supersymmetirc

sigma-models on tangent bundles on Hermitian symmetric spaces [27].

This paper is organized as follows. In section 2, we start by recalling the 4D N =

2 superconformal kinematics, and then continue on to define superconformal projective

multiplets and give several important examples. The superconformal action principle is

also discussed. Superconformal sigma-models are presented in section 3. As an illustration,

here we review the models for tensor (and, more generally, O(2n)) multiplets, which have

already appeared in the literature. A new family of superconformal sigma-models for

polar hypermultiplets is introduced. The latter theories provide general superconformal

sigma-model couplings in projective superspace. In section 4, we discuss the reduction of

N = 2 superconformal multiplets to N = 1 superfields. In section 5, we consider a large

class of polar hypermultiplet theories, which include the superconformal sigma-models as

a subclass, and address the problem of eliminating the auxiliary degrees of freedom. The

specific features of the superconformal sigma-models are analyzed in section 6. Finally,

some facts about N -extended superconformal Killing vectors are collected in the appendix.

2. 4D N = 2 superconformal formalism

In this section, we introduce various superconformal projective multiplets and discuss the

manifestly superconformal action principle. We start by recalling the key points of the

superconformal formalism in 4D N = 2 superspace R4|8 parametrized by coordinates zA =

(xa, θα
i , θ̄i

.

α
), where i = 1, 2.

2.1 Superconformal Killing vectors

Here we build on the formalism developed in [37] (see also [36]). By definition, a super-

conformal Killing vector6

ξ = ξ = ξA(z)DA = ξa(z) ∂a + ξα
i (z)Di

α + ξ̄i
.

α
(z) D̄

.

α
i (2.1)

obeys the condition

D̄i
.

α
Φ = 0 −→ D̄i

.

α
(ξ Φ) = 0 , (2.2)

for an arbitrary chiral superfield Φ. This condition implies the fulfillment of eq. (A.3) and

also

[ξ , Di
α] = −(Di

αξβ
j )Dj

β = ωα
βDi

β − σ̄ Di
α − Λj

i Dj
α . (2.3)

The latter relation corresponds to the choice N = 2 in eq. (A.5). The parameters of

(z-dependent) Lorentz ω and scale-chiral σ transformations are

ωαβ(z) = −
1

2
Di

(αξβ)i , σ(z) =
1

4
D̄
.

α
i ξ̄i

.

α
(2.4)

6The concept of superconformal Killing vectors [28 – 34] is extremely useful for various studies of super-

conformal theories in four, five and six dimensions, see e.g. [35 – 37, 25].
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and they can be seen to be chiral

D̄
.

α
i ωαβ = 0 , D̄

.

α
i σ = 0 . (2.5)

The parameters Λj
i defined by

Λj
i(z) =

1

2

(
Di

αξα
j −

1

2
δi
jD

k
αξα

k

)
= −

1

2

(
D̄
.

α
j ξ̄i

.

α
−

1

2
δi
jD̄

.

α
k ξ̄k

.

α

)
,

Λij = Λji ,

Λij = Λij (2.6)

correspond to SU(2) transformations. One can readily check the identity

Dk
αΛj

i = −2

(
δk
j Di

α −
1

2
δi
jD

k
α

)
σ , (2.7)

and therefore

D(i
α Λjk) = D̄

(i
.

α
Λjk) = 0 . (2.8)

A primary superfield H(z) (with its Lorentz and SU(2) indices suppressed) is defined

to possess the superconformal transformation

δH = −

(
ξ + ωα

βMβ
α + ω̄.

α

.

βM̄.

β

.

α + Λi
jRj

i + 2
(
p σ + q σ̄)

)
H . (2.9)

Here Mα
β and M̄.

α

.

β are the Lorentz generators, and Ri
j the generators of SU(2). The

parameters p and q determine the dimension (p + q) of the superfield and its U(1)R charge

proportional to (p − q).

Following [9, 3, 5], it is robust to make use of an isotwistor u+i ∈ C2 \ {0} that

allows one to introduce a subset of strictly anti-commuting spinor covariant derivatives, in

accordance with (A.4),

D+
α = Di

α u+
i , D̄+

.

α
= D̄i

.

α
u+

i {D+
α ,D+

β } = {D̄+
.

α
, D̄+

.

β
} = {D+

α , D̄+
.

β
} = 0 . (2.10)

Hence, one can define so-called analytic superfields7 constrained by D+
α Q = D̄+

.

α
Q = 0.

Let us introduce

Λ++ = Λij u+
i u+

j . (2.11)

It follows from (2.8) that Λ++ is analytic,

D+
α Λ++ = D̄+

.

α
Λ++ = 0 . (2.12)

In addition to u+
i , it is also useful to introduce an auxiliary isotwistor u−

i obeying the

only condition

(u+u−) = u+iu−
i 6= 0 . (2.13)

7Such superfields were called isochiral in [11].
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Of course, with u−
i fixed, this condition is satisfied only on an open subset of the isotwistor

space C2 \ {0}. With its aid, we introduce the isotwistor derivatives (compare with [3])

D++ = u+i ∂

∂u−i
, D−− = u−i ∂

∂u+i
, (2.14)

and the spinor covariant derivatives

D−
α = [D−−,D+

α ] , D̄−
.

α
= [D−−, D̄+

.

α
] . (2.15)

Since u+
i and u−

i form a linearly independent basis for C2, the superconformal Killing

vector can also be represented as follows:

ξ = ξ = ξa(z) ∂a −
1

(u+u−)

(
ξ+αD−

α + ξ̄+
.

αD̄−
.

α

)
+

1

(u+u−)

(
ξ−αD+

α + ξ̄−
.

αD̄+
.

α

)
, (2.16)

with ξ±α = ξαi u+
i and ξ̄+

.

α = ξ̄
.

αi u+
i .

Using eq. (2.7) one can show that the following combination

Σ =
Λ+−

(u+u−)
+ σ + σ̄ , Λ+− = Λij u+

i u−
j (2.17)

possesses the properties

D+
α Σ = D̄+

.

α
Σ = 0 , D++Σ =

Λ++

(u+u−)
, (2.18)

and thus Σ is analytic.8 Now, the (supervolume-preservation) identity (see, e.g. [39])

(−1)ADA ξA = 0 (2.19)

can be rewritten in the form

∂aξ
a +

1

(u+u−)

(
D−

α ξ+α + D̄−
.

α
ξ̄+

.

α − D−−Λ++

)
= 2Σ . (2.20)

Eq. (2.3) implies

δD+
α ≡

[
ξ −

Λ++

(u+u−)
D−−,D+

α

]
= ωα

β D+
β −

(
σ +

Λ+−

(u+u−)

)
D+

α , (2.21)

and similarly for δD̄+
.

α
.

2.2 Superconformal projective multiplets: definition

In defining 4D N = 2 superconformal multiplets in projective superspace, we closely follow

the formulation of 5D superconformal off-shell multiplets given in [25], and the subsequent

extension for 5D N = 1 AdS superspace [40].

A superconformal projective multiplet of weight n, Q(n)(z, u+), is a superfield that

lives on R4|8, is holomorphic with respect to the isotwistor variables u+
i on an open domain

of C2 \ {0}, and is characterized by the following conditions:

8There are natural analogs of Λ++ and Σ in the harmonic-superspace approach [38, 4].
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(i) it obeys the analyticity constraints

D+
α Q(n) = D̄+

.

α
Q(n) = 0; (2.22)

(ii) it is a homogeneous function of u+ of degree n, that is

Q(n)(z, c u+) = cn Q(n)(z, u+) , c ∈ C∗ ; (2.23)

(iii) it possesses the superconformal transformation law:

δQ(n) = −

(
ξ −

Λ++

(u+u−)
D−−

)
Q(n) − n Σ Q(n) . (2.24)

As a consequence of eqs. (2.18) and (2.21), the variation δQ(n) is analytic. By construction,

Q(n) is independent of the auxiliary isotwistor u−
i ,

∂

∂u−i
Q(n) = 0 −→ D++Q(n) = 0 . (2.25)

Eq. (2.23) implies that δQ(n) is also independent of u−,

∂

∂u−i
δQ(n) = 0 , (2.26)

although separate contributions to the right-hand side of (2.24) involve u−. In order for

eq. (2.23) (and also eq. (2.32)) to be unambiguous, in what follows we restrict the weight

n to be integer.

Using the natural projection π: C2 \ {0} → CP 1, the superconformal projective mul-

tiplets can be reformulated as tensor fields that live in R4|8 × CP 1 and are holomorphic

on an open domain of CP 1, see below. In the harmonic-superspace approach [3, 4], one

has to deal with smooth tensor fields on R4|8 × S2 which are globally defined on S2. The

projective-superspace action [5, 43] does not require the Lagrangian (and, hence, the mat-

ter superfields appearing in the Lagrangian) to be globally defined over CP 1. In practice

this often gives some more freedom, say, for sigma-model building.

Simplest superconformal projective multiplets are homogeneous polynomials in u+

H(n)(z, u) = u+
i1
· · · u+

in
H i1···in(z) . (2.27)

Following the terminology of [23], they will be called O(n) multiplets. Such multiplets are

globally defined on C2 \ {0}. The analyticity constraints (2.22) are equivalent to

D(j
α H i1···in) = D̄

(j
.

α
H i1···in) = 0 . (2.28)

The transformation law (2.24) is equivalent to

δH i1···in = −ξH i1···in −
n∑

k=1

Λj
ikHji1···bik···in − n(σ + σ̄)H i1···in , (2.29)

– 6 –
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where the notation îk means that the corresponding index is missing. The latter trans-

formation law is uniquely determined by the constraints (2.28). It should be pointed out

that the case n = 1 corresponds to an on-shell Fayet-Sohnius hypermultiplet [41], n = 2 to

an off-shell tensor multiplet [18 – 20]. In the super-Poincaré case, general O(n) multiplets,

with n > 2, were studied in [42, 46, 7].

The complex conjugate of an analytic superfield Q(n) is not analytic. However, one can

introduce a generalized, analyticity-preserving conjugation [9, 3, 5], Q(n) → Q̃(n), defined

as (see also [40])

Q̃(n)(u+) ≡ Q̄(n)
(
ũ+

)
, ũ+ = iσ2 u+ , (2.30)

with Q̄(n) the complex conjugate of Q(n). Its fundamental property is

D̃+
α Q(n) = −(−1)ǫ(Q

(n)) D̄+
.

α
Q̃(n) , ¯̃D+

.

α
Q(n) = (−1)ǫ(Q

(n)) D+
α Q̃(n) . (2.31)

One can show
˜̃
Q(n) = (−1)nQ(n) , (2.32)

and therefore real supermultiplets can be consistently defined when n is even. In what

follows, Q̃(n) will be called the smile-conjugate of Q(n).

By smile-conjugating the transformation law (2.24), one can see that Q̃(n) is a super-

conformal projective multiplet of weight n.

2.3 Superconformal projective multiplets: Examples

Consider the natural projection π: C2 \ {0} → CP 1. The isotwistor variables u+
i provide

homogeneous global coordinates for points in CP 1. Thus, any analytic superfield corre-

sponds to a supermultiplet living in R4|8 × CP 1. Instead of u+
i , it is often useful to deal

with an inhomogeneous complex coordinate ζ which is defined locally and is invariant under

projective rescalings u+
i → c u+

i , with c ∈ C∗. Then, one should replace Q(n)(z, u+) with

a new superfield Q[n](z, ζ) ∝ Q(n)(z, u+), where Q[n](z, ζ) is holomorphic with respect to

ζ. As is demonstrated below, the precise definition of Q[n](z, ζ) depends on the projective

supermultiplet under consideration. It is standard to cover C2 \{0} by two open charts: (i)

the north chart characterized by u+1 6= 0; (ii) the south chart with u+2 6= 0. In discussing

various supermultiplets, our consideration below will be restricted to the north chart.

Since u+1 6= 0 in the north chart, it is natural to introduce a projective-invariant

complex variable ζ ∈ C as follows:

u+i = u+1(1, ζ) = u+1ζi , ζi = (1, ζ) , ζi = εij ζj = (−ζ, 1) . (2.33)

Any projective multiplet Q(n) and its superconformal variation (2.24) do not depend on

u−, and thus we can make a convenient choice for the later. It is useful to choose

u−
i = (1, 0) , u−i = εij u−

j = (0,−1) . (2.34)

For the analytic transformation parameters Λ++ (2.11) and Σ (2.17), we then have

Λ++ =
(
u+1

)2
Λ++(ζ) , Λ++(ζ) = Λij ζiζj = Λ11 ζ2 − 2Λ12 ζ + Λ22 ,

Σ = Σ(ζ) , Σ(ζ) = Λ1i ζi + σ + σ̄ = −Λ11 ζ + Λ12 + σ + σ̄ . (2.35)

– 7 –
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An arctic multiplet9 of weight n is defined to be holomorphic on the north chart. It

can be represented as

Υ(n)(z, u) = (u+1)n Υ[n](z, ζ) , Υ[n](z, ζ) =

∞∑

k=0

Υk(z)ζk . (2.36)

The superconformal transformation law of Υ[n] can be derived from eq. (2.24) to be

δΥ[n] = −

(
ξ + Λ++(ζ) ∂ζ

)
Υ[n] − n Σ(ζ)Υ[n] . (2.37)

This transformation law is analogous to that given in [25] in five dimensions.

The smile-conjugate of Υ(n) is said to be an antarctic multiplet of weight n. It proves

to be holomorphic on the south chart, while in the north chart it has the form

Υ̃(n)(z, u) = (u+2)n Υ̃[n](z, ζ) = (u+1)nζn Υ̃[n](z, ζ) ,

Υ̃[n](z, ζ) =

∞∑

k=0

(−1)kῩk(z)
1

ζk
, (2.38)

with Ῡk the complex conjugate of Uk. In accordance with (2.24), its superconformal

transformation is as follows (compare with the 5D case [25]):

δΥ̃[n] = −
1

ζn

(
ξ + Λ++(ζ) ∂ζ

)
(ζn Υ̃(n)) − n Σ(ζ) Υ̃(n) . (2.39)

The arctic multiplet Υ[n] and its smile-conjugate Υ̃(n) constitute a polar multiplet.

In the case of a real O(2n) multiplet, it can be represented as

H(2n)(z, u+) =
(
iu+1u+2

)n
H [2n](z, ζ) =

(
u+1

)2n(
i ζ

)n
H [2n](z, ζ) ,

H [2n](z, ζ) =
n∑

k=−n

Hk(z)ζk , H̄k = (−1)kH−k . (2.40)

In accordance with (2.24), the superconformal transformation of H [2n] is

δH [2n] = −
1

ζn

(
ξ + Λ++(ζ) ∂ζ

)
(ζnH [2n]) − 2n Σ(ζ)H [2n] , (2.41)

analogous to the five-dimensional transformation law [25]. In a similar way one can intro-

duce complex O(2n + 1) multiplets.

Finally, let us consider a real tropical multiplet of weight 2n.

U (2n)(z, u+) =
(
iu+1u+2

)n
U [2n](z, ζ) =

(
u+1

)2n(
i ζ

)n
U [2n](z, ζ) ,

U [2n](z, ζ) =
∞∑

k=−∞

Uk(z)ζk , Ūk = (−1)kU−k . (2.42)

9We use the terminology introduced in [23] for various projective multiplets in the super-Poincaré case.
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Its superconformal transformation copies (2.41). The case n = 1 corresponds to supersym-

metric Lagrangians, see below. A tropical multiplet with n = 0 is used to describe the

prepotential for a massless vector multiplet.

In terms of the superfield Q[n](z, ζ), the analyticity condition (2.22) takes the form

D2
αQ[n](ζ) = ζ D1

αQ[n](ζ) , D̄α̇
2 Q[n](ζ) = −

1

ζ
D̄α̇

1 Q[n](ζ) . (2.43)

This relation implies that the dependence of the component superfields Qk of Q[n](ζ),

Q[n](z, ζ) =
∞∑

k=−∞

Qk(z)ζk , (2.44)

on θα
2 and θ̄

2
.

α
is uniquely determined in terms of their dependence on θα

1 ≡ θα and θ̄
1
.

α
≡ θ̄.α.

In other words, the projective superfields depend effectively on half the Grassmann variables

which can be choosen to be the spinor coordinates of 4D, N = 1 superspace. If the

series (2.44) terminates from below, then the two lowest components are constrained N = 1

superfields. In particular, in the case of the arctic multiplet (2.36), Φ := Υ0| is chiral,

D̄.

αΦ = 0, and Σ := Υ1| is complex linear, D̄2Σ = 0.

2.4 Superconformal action

Let L++(z, u+) ≡ L(2)(z, u+) be a real superconformal projective multiplet of weight two.

Following [25], we are going to demonstrate that the action functional10

S =
1

2π

∮
u+

i du+i

(u+u−)4

∫
d4x (D−)4L++(z, u+)

∣∣∣∣
∣∣∣∣ , (D−)4 =

1

16
(D−)2(D̄−)2 (2.45)

is invariant under arbitrary superconformal transformations. Here the line integral is car-

ried out over a closed contour, γ = {u+
i (t)}, in the space of u+ variables. The integrand

in (2.45) involves a constant (i.e. t-independent) isotwistor u−
i subject to the only condition

that u+(t) and u− form a linearly independent basis at each point of the contour γ, that

is, eq. (2.13) holds at each point of the contour.

In (2.45), the double-bar notation, U ||, denotes the θ-independent component of a

N = 2 superfield U(x, θi, θ̄
i). Below, we will also use a single-bar notation, U |, to denote

the N = 1 projection of U . Thus

U || = U(x, θi, θ̄
i)

∣∣∣∣
θi=θ̄i=0

, U | = U(x, θi, θ̄
i)

∣∣∣∣
θ2=θ̄2=0

. (2.46)

Action (2.45) is invariant under arbitrary projective transformations of the form

(ui
− , ui

+) → (ui
− , ui

+)R , R =

(
a 0

b c

)
∈ GL(2, C) . (2.47)

10In the super-Poincaré case, this action was introduced in [5]. It was re-formulated in a manifestly

projective-invariant form in [43].
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This gauge-like symmetry implies that the action is actually independent of u−
i . Using the

representation (2.16) along with the analyticity conditions, the transformation law (2.24)

with n = 2 gives

δL++ = −

{
ξa∂a −

1

(u+u−)

(
ξ+αD−

α + ξ̄+
.

αD̄−
.

α
+ Λ++D−−

)}
L++ − 2Σ L++ . (2.48)

Making here use of eq. (2.20) leads to

δL++ = −∂a

(
ξaL++

)
−

1

(u+u−)

{
D−

α

(
ξ+αL++

)
+ D̄−

.

α

(
ξ̄+

.

αL++
)}

+
1

(u+u−)
D−−

(
Λ++L++

)
. (2.49)

It remains to note the idenity (see [40] for a related discussion)

(
.

u
+
u+)

(u+u−)5
D−−

(
Λ++L++

)
= −

d

dt

(
Λ++L++

(u+u−)4

)
, (2.50)

where (
.

u
+
u+) dt = u+

i du+i is part of the line integral measure in (2.45). Since the line

integral in (2.45) corresponds to a closed contour, the action is seen to be invariant.

We can now formulate a general superconformal Lagrangian:

L++(z, u+) = L

(
Q(n)(z, u+)

)
, L

(
Q(n)(z, c u+)

)
= c2 L

(
Q(n)(z, u+)

)
. (2.51)

Here the dynamical variables Q(n) are superconformal projective multiplets.

2.5 Projective gauge fixing

Without loss of generality, one can assume that the integration contour in (2.45) does not

pass through the “north pole” u+i ∼ (0, 1). Then, one can introduce the complex variable

ζ as in (2.33), and fix the projective invariance (2.47) as in (2.34). If we also represent the

Lagrangian in the form

L++(z, u+) = iu+1u+2L(z, ζ) = i(u+1)2 ζ L(z, ζ) , (2.52)

the action reduces to

S =
1

16

∮
dζ

2πi

∫
d4x ζ (D1)2(D̄2)

2L(z, ζ)

∣∣∣∣
∣∣∣∣ . (2.53)

Finally, making use of the analyticity of L gives

S =
1

2πi

∮
dζ

ζ

∫
d4xd4θ L(z, ζ)

∣∣∣∣ , (2.54)

where the integration is carried out over the N = 1 superspace.

The Lagrangian L(z, ζ) introduced in (2.52) is characterized by the following super-

conformal transformation:

−ζ δL = ∂a

(
ξa ζ L

)
+ D−

α

(
ξ+α ζ L

)
+ D̄−

.

α

(
ξ̄+

.

α ζ L

)
+ ∂ζ

(
Λ++(ζ)ζ L

)
. (2.55)

It makes obvious the superconformal invariance of (2.53). Eq. (2.55) can be compared with

the five-dimensional transformation in [25].
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3. 4D N = 2 superconformal theories

3.1 Superconformal tensor and O(2n) multiplets

Superconformal self-couplings of tensor multiplets are well-known [5, 15]. For a set of

tensor multiplets H++I , with I = 1, . . . , n, superconformal dynamics is generated by a

Lagrangian L++ = L
(
H++I

)
that is a real homogeneous function of first degree in the

variables H++,

H++I ∂

∂H++I
L

(
H++

)
= L

(
H++

)
. (3.1)

Generalizations for O(2n) multilets are obvious.

To describe the improved N = 2 tensor multiplet [44] in projective superspace, some

special considerations are required. But since such a formulation is well-known [5, 45, 15],

we will not discuss it here.

We should point out that some examples of superconformal self-couplings for tensor

and O(4) multiplets in harmonic superspace were given in [46] and [47] respectively.

3.2 Superconformal polar multiplets

We consider a system of interacting arctic weight-one multiplets Υ+(z, u+) and their smile-

conjugates Υ̃+ described by the Lagrangian [25, 40]

L++ = iK(Υ+, Υ̃+) , (3.2)

with K(ΦI , Φ̄J̄) a real analytic function of n complex variables ΦI , where I = 1, . . . , n.

Since L++ = L++(z, u+) is required to be a weight-two projective superfield, the potential

K has to respect the following homogeneity condition
(

ΦI ∂

∂ΦI
+ Φ̄Ī ∂

∂Φ̄Ī

)
K(Φ, Φ̄) = 2K(Φ, Φ̄) . (3.3)

For L++ to be real, we require a stronger condition

ΦI ∂

∂ΦI
K(Φ, Φ̄) = K(Φ, Φ̄) . (3.4)

Then, representing Υ+(z, u+) = u+1 Υ(z, ζ) and Υ̃+(z, u+) = u+2 Υ̃(z, ζ), we can rewrite

the Lagrangian in the form

L++(z, u+) = iu+1u+2 L(z, ζ) , L = K(Υ, Υ̃) . (3.5)

The action takes the form

S =
1

2πi

∮
dζ

ζ

∫
d4xd4θ K(ΥI , Υ̃J̄) , (3.6)

with the integration contour around the origin in C. We should emphasise that action (3.6)

is formulated in terms of N = 1 superfields, but it is invariant under linearly realized N = 2

superconformal transformations.
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There is a simple algebraic construction to generate superconformal actions of the

form (3.6). Let Pn(wa) = Pn(w1, . . . , wq) be a homogeneous polynomial of order n in q

complex variables wa, Pn(cwa) = cn Pn(wa). Given a constant Hermitian matrix ηāb, we

consider the action

S =
1

2πi

∮
dζ

ζ

∫
d4xd4θ Υ̃ā ηāb Υb , (3.7)

with the weight-one arctic multiplets Υa(z, ζ) obeying the constraint

Pn(Υa) = 0 . (3.8)

Suppose that the dynamical variables ΥI(z, ζ) in (3.6) include a compensator Υ(z, ζ),

that is an arctic multiplet such that its lowest-order (ζ-independent) component Υ0 is

everywhere non-vanishing. Then, we can introduce new dynamical variables comprising the

unique weight-one multiplet Υ(z, ζ) and some set of weight-zero arctic multiplets υi(z, ζ).

The action (3.6) will then turn into

S =
1

2πi

∮
dζ

ζ

∫
d4xd4θ Υ̃Υ eK(υ,eυ) , (3.9)

with K(υ, υ̃) a Kähler potential. This action is invariant under Kähler tansformations

Υ −→ e−Λ(υ) Υ , K(υ, υ̃) → K(υ, υ̃) + Λ(υ) + Λ̄(υ̃) , (3.10)

with Λ a holomorphic function. Action (3.9) is reminiscent of that describing a general

chiral sigma-model in 4D N = 1 old minimal supergravity provided one switches off the

gravitational superfield Hm and keeps only the chiral compensator ϕ alive (see, e. g., [32]

for a review), with the latter being replaced with Υ in the N = 2 case.

4. Reduction to N = 1 superfields

The important powerful feature of the projective supermultiplets is that they admit a simple

decomposition in terms of standard N = 1 superfields. In the superconformal case, it is

therefore useful to reduce the N = 2 superconformal transformation laws of the projective

supermultiplets to N = 1 superfields. This is explicitly carried out in the present section.

4.1 N = 1 decomposition of N = 2 superconformal Killings

It turns out that the N = 2 superconformal Killing vector ξ generates three types of

transformations at the level of N = 1 superfields. In terms of the N = 1 projection

ξ
∣∣ := ξA

∣∣DA ,

[
ξ
∣∣ , D1

α

]
= ωα

β
∣∣D1

β −

(
σ̄
∣∣ + Λ1

1
∣∣
)

D1
α − Λ2

1
∣∣ D2

α , (4.1)

they are as follows:
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1. An arbitrary N = 1 superconformal transformation generated by

ξ = ξ = ξa(z) ∂a + ξα(z)Dα + ξ̄.α(z) D̄
.

α (4.2)

such that

[ξ , Di
α] = ωα

βDβ +

(
σ − 2σ̄

)
Dα , (4.3)

see the appendix. The components of ξ and their descendants ωα
β and σ correspond

to the following choice of the parameters in (4.1):

ξ
∣∣ = ξ , ωα

β
∣∣ = ωα

β , σ
∣∣ = σ , Λ1

1
∣∣ = σ̄ − σ , Λ2

1
∣∣ = 0 . (4.4)

2. An extended superconformal transformation generated by

ξ
∣∣ = ραD2

α + ρ̄.αD̄
.

α
2 , ξα

2

∣∣ = ρα ,

ωα
β
∣∣ = σ

∣∣ = Λ1
1
∣∣ = 0 , Λ2

1
∣∣ = Λ11

∣∣ = −
1

2
Dαρα . (4.5)

3. A shadow chiral rotation. This is a phase transformation of θα
2 only, with θα

1 kept

unchanged, and it corresponds to the choice

ξ
∣∣ = 0 , ωα

β
∣∣ = Λ2

1
∣∣ = 0 , σ

∣∣ = Λ1
1
∣∣ = −σ̄

∣∣ = −
i

2
α . (4.6)

The spinor parameter ρα in (4.5) can be shown to obey the equations

D̄.

αρβ = 0 , D(αρβ) = 0 , (4.7)

and the latter imply

∂
.

α(αρβ) = D2ρβ = 0 . (4.8)

There are several ordinary (component) transformations generated by the chiral spinor

ρα in (4.5): (i) second Q-supersymmetry transformation (ǫα); (ii) off-diagonal SU(2)-

transformation (λ = Λ11|θ=0); (iii) second S-supersymmetry transformation (η̄.α). They

emerge as follows: ρα(x(+), θ) = ǫα + λ θα − i η̄.α x
.

αα
(+) , with xa

(+) the chiral extension of xa.

4.2 N = 1 superconformal transformations

Let us first consider how the N = 2 superconformal multiplets vary under the N = 1

superconformal transformations described by eqs. (4.2)—(4.4). Here the superconfomal

building blocks (2.35) take the form:

Λ++(ζ)
∣∣ = 2ζ(σ̄ − σ) , Σ(ζ)

∣∣ = 2σ . (4.9)

Consider the arctic multiplet of weight n, eq. (2.36). Its N = 2 superconformal trans-

formation law (2.37) implies

δΥk = −ξΥk − 2k(σ̄ − σ)Υk − 2nσΥk . (4.10)
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In particular, for the leading chiral Φ := Υ0 and complex linear Σ := Υ1 components we

get

δΦ = −ξΦ − 2nσΦ , δΣ = −ξΣ − 2σ̄Σ − 2(n − 1)σΣ . (4.11)

These transformation laws can be seen to be consistent with the off-shell constraints D̄.

αΦ =

0 and D̄2Σ = 0.

Consider the real O(2n) multiplet (2.41). Its N = 2 superconformal transformation

law (2.41) implies

δHk = −ξHk + 2(k − n)σHk − 2(k + n)σ̄Hk . (4.12)

In particular, for the leading chiral Φ := H−n and complex linear Σ := H−n+1 components

we get

δΦ = −ξΦ − 4nσΦ , δΣ = −ξΣ − 2σ̄Σ − 2(2n − 1)σΣ . (4.13)

These transformation laws are consistent with the off-shell constraints D̄.

αΦ = 0 and D̄2Σ =

0. As is seen from (4.12), the variation of the real superfield H0 is real.

For n > 1, the real O(2n) multiplet describes an off-shell hypermultiplet. The special

case n = 1 corresponds to an off-shell tensor multiplet. In accordance with (4.13), the real

linear superfield G := H0 = Ḡ transforms as

δG = −ξG − 2(σ̄ + σ)G . (4.14)

This transformation law is uniquely fixed by the off-shell constraints D̄2G = D2G = 0.

4.3 Extended superconformal transformations

We now turn to the extended superconformal transformations (4.5). In this case, the

superconformal building blocks are

Λ++(ζ)
∣∣ = −

1

2

(
ζ2Dαρα + D̄.

αρ̄
.

α
)
, Σ(ζ)

∣∣ =
1

2
ζDαρα . (4.15)

To read off the corresponding transformations of the component N = 1 superfields of

N = 2 multiplets, it remains to use the identity

(
ραD2

α + ρ̄.αD̄
.

α
2

)
Q[n](z, ζ) =

(
ζραDα −

1

ζ
ρ̄.αD̄

.

α
)
Q[n](z, ζ) (4.16)

that follows form the analyticity constraint.

For the arctic multiplet of weight n, eq. (2.36), we obtain

δΥ0 = ρ̄.αD̄
.

αΥ1 +
1

2

(
D̄.

αρ̄
.

α
)
Υ1 ,

δΥ1 = −ραDαΥ0 + D̄.

α

(
ρ̄
.

αΥ2

)
−

n

2

(
Dαρα

)
Υ0 , (4.17a)

δΥk = −ραDαΥk−1 + ρ̄.αD̄
.

αΥk+1

+
1

2
(k − n − 1)

(
Dαρα

)
Υk−1 +

1

2
(k + 1)

(
D̄.

αρ̄
.

α
)
Υk+1 , k > 1 . (4.17b)
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One can see that the transformation laws in (4.17a) are consistent with the off-shell con-

straints D̄.

αΥ0 = 0 and D̄2Υ1 = 0.

For the real O(2n) multiplet (2.41), we obtain

δH−n = ρ̄.αD̄
.

αH−n+1 +
1

2

(
D̄.

αρ̄
.

α
)
H−n+1 ,

δH−n+1 = −ραDαH−n + D̄.

α

(
ρ̄
.

αH−n+2

)
− n

(
Dαρα

)
H−n , (4.18a)

δHk = −ραDαHk−1 + ρ̄.αD̄
.

αHk+1 −
1

2
(n + 1 − k)(Dαρα)Hk−1

+
1

2
(n + 1 + k)

(
D̄.

αρ̄
.

α
)
Hk+1 , −n + 1 < k < 0 , (4.18b)

δH0 = −ραDαH−1 − ρ̄.αD̄
.

αH̄−1 −
1

2
(n + 1)

(
(Dαρα)H−1 +

(
D̄.

αρ̄
.

α
)
H̄−1

)
. (4.18c)

4.4 Shadow chiral rotation

Finally, let us consider the shadow chiral rotation (4.6). In the case of the arctic multiplet

of weight n, eq. (2.36), it acts as follows:

δΥk = iα(k −
n

2
)Υk . (4.19)

For the real O(2n) multiplet (2.41), we obtain

δHk = iαkHk . (4.20)

The component H0 is real, and therefore it does not transform. In a finite form, this

transformation reads

Υ(z, ζ) −→ Υ′(z, ζ) = e−i(n/2)α Υ(z, eiαζ) , (4.21)

H [2n](z, ζ) −→ H [2n]′(z, ζ) = H [2n](z, eiαζ) . (4.22)

5. Non-superconformal case: N = 2 sigma-models on tangent bundles of

Kähler manifolds

Before turning to an analysis of the superconformal dynamical system (3.6), it is instructive

to consider a more general family of 4D N = 2 off-shell supersymmetric nonlinear sigma-

models that are described in ordinary N = 1 superspace by the action11

S[Υ, Υ̃] =
1

2πi

∮
dζ

ζ

∫
d4xd4θ K

(
ΥI(ζ), Υ̃J̄(ζ)

)
. (5.1)

The arctic Υ(ζ) and antarctic Υ̃(ζ) dynamical variables are generated by an infinite set of

ordinary superfields:

Υ(ζ) =

∞∑

n=0

Υnζn = Φ + Σ ζ + O(ζ2) , Υ̃(ζ) =

∞∑

n=0

Ῡn(−ζ)−n . (5.2)

11The study of such models was initiated in [24, 49, 50], and important results have recently been

obtained in [51, 27]. They correspond to a subclass of the general hypermultiplet theories in projective

superspace [6, 7] obtained by replacing K
`
Υ, eΥ

´
→ K

`
Υ, eΥ, ζ

´
in (5.1).
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Here Φ is chiral, Σ complex linear,

D̄.

αΦ = 0 , D̄2Σ = 0 , (5.3)

and the remaining component superfields are unconstrained complex superfields. The

above theory occurs as a minimal N = 2 extension of the general four-dimensional N = 1

supersymmetric nonlinear sigma-model [48]

S[Φ, Φ̄] =

∫
d4xd4θ K(ΦI , Φ̄J̄) , (5.4)

with K the Kähler potential of a Kähler manifold M.

The reason we are interested here in the N = 2 supersymmetric theory (5.1) is that

its action becomes superconformal upon imposing the homogeneity condition (3.4).

5.1 Background material on N = 2 sigma-models

The extended supersymmetric sigma-model (5.1) inherits all the geometric features of its

N = 1 predecessor (5.4). The Kähler invariance of the latter, K(Φ, Φ̄) → K(Φ, Φ̄)+Λ(Φ)+

Λ̄(Φ̄), turns into

K(Υ, Υ̃) −→ K(Υ, Υ̃) + Λ(Υ) + Λ̄(Υ̃) (5.5)

for the model (5.1).12 A holomorphic reparametrization of the Kähler manifold, ΦI →

Φ′I = f I
(
Φ

)
, has the following counterpart

ΥI(ζ) −→ Υ′I(ζ) = f I
(
Υ(ζ)

)
(5.6)

in the N = 2 case. Therefore, the physical superfields of the N = 2 theory

ΥI(ζ)

∣∣∣∣
ζ=0

= ΦI ,
dΥI(ζ)

dζ

∣∣∣∣
ζ=0

= ΣI , (5.7)

should be regarded, respectively, as coordinates of a point in the Kähler manifold and a

tangent vector at the same point. Thus the variables (ΦI ,ΣJ) parametrize the tangent

bundle TM of the Kähler manifold M [25].

To describe the theory in terms of the physical superfields Φ and Σ only, all the auxiliary

superfields have to be eliminated with the aid of the corresponding algebraic equations of

motion

∮
dζ

ζ
ζn ∂K(Υ, Υ̃)

∂ΥI
=

∮
dζ

ζ
ζ−n ∂K(Υ, Υ̃)

∂Υ̃J̄
= 0 , n ≥ 2 . (5.8)

Let Υ∗(ζ) ≡ Υ∗(ζ; Φ, Φ̄,Σ, Σ̄) denote a unique solution subject to the initial conditions

Υ∗(0) = Φ ,
.

Υ∗(0) = Σ . (5.9)

12In the superconfomal case, the Lagrangian obeys the homogeneity condition (3.4), and no Kähler

invariance survives.
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For a general Kähler manifold M, the auxiliary superfields Υ2,Υ3, . . . , and their con-

jugates, can be eliminated only perturbatively. Their elimination can be carried out using

the ansatz [52]

ΥI
n =

∞∑

p=0

GI
J1...Jn+p L̄1...L̄p

(Φ, Φ̄)ΣJ1 . . . ΣJn+p Σ̄L̄1 . . . Σ̄L̄p , n ≥ 2 . (5.10)

Assuming that the auxiliary superfields have been eliminated, the action (5.1) should take

the form13 [49, 50]:

Stb[Φ,Σ] =
1

2πi

∮
dζ

ζ

∫
d4xd4θ K

(
Υ∗(ζ), Ῠ∗(ζ)

)

=

∫
d4xd4θ

{
K

(
Φ, Φ̄

)
+ L

(
Φ, Φ̄,Σ, Σ̄

)}
,

L =
∞∑

n=1

(−1)nLI1···InJ̄1···J̄n

(
Φ, Φ̄

)
ΣI1 . . . ΣInΣ̄J̄1 . . . Σ̄J̄n :=

∞∑

n=1

(−1)nL(n) , (5.11)

where LIJ̄ = gIJ̄

(
Φ, Φ̄

)
and the series coefficients LI1···InJ̄1···J̄n

, for n > 1, are tensor func-

tions of the Kähler metric gIJ̄

(
Φ, Φ̄

)
= ∂I∂J̄K(Φ, Φ̄), the Riemann curvature RIJ̄KL̄

(
Φ, Φ̄

)

and its covariant derivatives. Each term in the action contains equal powers of Σ and Σ̄,

since the original model (5.1) is invariant under rigid U(1) transformations14 [49]

Υ(ζ) 7→ Υ(eiαζ) ⇐⇒ Υn(z) 7→ einαΥn(z) . (5.12)

5.2 Putting the extended supersymmetry to work

In the recent work [27], it was demonstrated that supersymmetry considerations allow one

to avoid the problem of solving the auxiliary field equations (5.8) in the case of Hermitian

symmetric spaces which possess a covariantly constant curvature tensor.

∇LRI1J̄1I2J̄2
= ∇̄L̄RI1J̄1I2J̄2

= 0 . (5.13)

Here we address the general case of an arbitrary Kähler manifold, with no pretense of

completeness.

The theory under consideration, eq. (5.1), is N = 2 super-Poincaré invariant. In terms

of the superconformal formalism presented in section 2, its symmetry structure is described

by those transformations which are characterised by

Λij = σ = 0 . (5.14)

These conditions correspond to the N = 2 Killing supervectors. In particular, the param-

eter ρα in (4.5) should be restricted to be a constant spinor, ρα = εα = const. Then, the

arctic multiplet transformation laws (4.17a) and (4.17b) become

δΥ0 = ε̄.αD̄
.

αΥ1 , δΥ1 = −εαDαΥ0 + ε̄.αD̄
.

αΥ2 , (5.15a)

δΥk = −εαDαΥk−1 + ε̄.αD̄
.

αΥk+1 , k > 1 . (5.15b)

13As compared with the expressions in [49, 50], the series for L contains an extra factor of (−1)n. The

reason for its insertion will become clear in next subsection.
14Transformation (5.12) coincides with the shadow chiral rotation (4.21) for n = 0.
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Upon elimination of the auxiliary superfields, the action (5.11) should be invariant under

the supersymmetry transformations

δΦ = ε̄.αD̄
.

αΣ , δΣ = −εαDαΦ + ε̄.αD̄
.

αΥ2

(
Φ, Φ̄,Σ, Σ̄

)
, (5.16)

where Υ2 now a composite field of the general form given in (5.10). Since Υ2 transforms

as a connection under the holomorphic reparametrizations (5.6)

ΥI
2 −→ Υ′I

2 =
1

2

∂2f I
(
Φ

)

∂ΦJ∂ΦK
ΣJΣK +

∂f I
(
Φ

)

∂ΦJ
ΣJ , (5.17)

we can rewrite Υ2 in a slightly more specific form:

ΥI
2 = −

1

2
ΓI

JK

(
Φ, Φ̄

)
ΣJΣK +

∞∑

p=1

GI
J1...Jp+2 L̄1...L̄p

(Φ, Φ̄)ΣJ1 . . . ΣJp+2 Σ̄L̄1 . . . Σ̄L̄p ,

:= −
1

2
ΓI

JK

(
Φ, Φ̄

)
ΣJΣK +

∞∑

p=1

GI
(p) , (5.18)

with ΓI
JK(Φ, Φ̄) the Christoffel symbols for the Kähler metric gIJ̄(Φ, Φ̄). Here the co-

efficients GI
J1...Jp+2 L̄1...L̄p

(Φ, Φ̄) are tensor functions of the Kähler metric, the Riemann

curvature RIJ̄KL̄

(
Φ, Φ̄

)
and its covariant derivatives.

Of course, the tensor fields LI1···InJ̄1···J̄n
in (5.11) and GI

J1...Jp+2 L̄1...L̄p
in (5.18) are

uniquely determined, in the theory with action (5.1), once (i) we have solved the auxiliary

field equations (5.8); and (ii) have done the contour integral in the first line of (5.11).

However, these two problems are tremendous in general. There is an alternative approach.

We can look for a N = 1 supersymmetric theory of the form (5.11), which is required to

be invariant under extended supersymmetric transformations (5.16) such that ΥI
2 is of the

general form (5.18). It is clear, from the previous considerations, that the requirement of

extended supersymmetry should uniquely determine both sets of the coefficient functions

LI1···InJ̄1···J̄n
and GI

J1...Jp+2 L̄1...L̄p
. And it does indeed, as can be explicitly checked in

leading orders of perturbation theory. Here are some low-order results:

L(1) = gIJ̄ΣIΣ̄J̄ , (5.19a)

L(2) =
1

4
RI1J̄1I2J̄2

ΣI1ΣI2Σ̄J̄1Σ̄J̄2 , (5.19b)

L(3) =
1

12

{
1

6
{∇I3, ∇̄J̄3

}RI1J̄1I2J̄2
+ RI1J̄1I2

LRLJ̄2I3J̄3

}
ΣI1 . . . ΣI3Σ̄J̄1 . . . Σ̄J̄3 , (5.19c)

and

GL
(1) =

1

6
∇I3RI1J̄I2

L ΣI1 . . . ΣI3Σ̄J̄ , (5.20)

The expressions for L(1) and L(2) first appeared in [25] and [49] respectively.

Before continuing on, we should recall the important notion of canonical coordinate

system for Kähler manifolds that was introduced by Bochner in 1947 [54] and later used
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by Calabi in the 1950s [55].15 In a neighborhood of any point p of the Kähler manifold

M, holomorphic reparametrizations and Kähler transformations can be used to choose a

coordinate system, with origin at p, in which the Kähler potential takes the form:

K(φ, φ̄) = gIJ̄ φI φ̄J̄ +

∞∑

m,n≥2

K(m,n)(φ, φ̄) ,

K(m,n)(φ, φ̄) :=
1

m!n!
KI1···ImJ̄1···J̄n

φI1 . . . φIm φ̄J̄1 . . . φ̄J̄n . (5.21)

In such a coordinate system, there still remains the freedom to perform linear holomorphic

reparametrizations which can be used to set the metric at the origin, p ∈ M, to be

gIJ̄ = δIJ̄ . The Taylor coefficients, KI1···ImJ̄1···J̄n
, in (5.21) turn out to be tensor functions

of the Kähler metric, the Riemann curvature RIJ̄KL̄ and its covariant derivatives, all of

them evaluated at the origin. In particular, one finds16

K(2,2) =
1

4
RI1J̄1I2J̄2

φI1φI2φ̄J̄1 φ̄J̄2 , (5.22a)

K(3,2) =
1

12
∇I3RI1J̄1I2J̄2

φI1φI2φI3φ̄J̄1 φ̄J̄2 , (5.22b)

K(4,2) =
1

48
∇I3∇I4RI1J̄1I2J̄2

φI1 . . . φI4φ̄J̄1 φ̄J̄2 , (5.22c)

K(3,3) =
1

12

{
1

6
{∇I3 , ∇̄J̄3

}RI1J̄1I2J̄2
+ RI1J̄1I2

LRLJ̄2I3J̄3

}
φI1 . . . φI3 φ̄J̄1 . . . φ̄J̄3 , (5.22d)

K(4,3) =
1

144

{
∇̄J̄3

∇I3∇I4RI1J̄1I2J̄2
+ 6RI3J̄3I4

L∇LRI1J̄1I2J̄2

+4RI1J̄1LJ̄2
∇I2RI3J̄3I4

L

}
φI1 . . . φI4 φ̄J̄1 . . . φ̄J̄3

=
1

144
KI1···I4J̄1···J̄3

φI1 . . . φI4 φ̄J̄1 . . . φ̄J̄3 , (5.22e)

K(4,4) =
1

576

{
∇̄J̄4

KI1···I4J̄1···J̄3
+ 6RI3J̄3I4

L∇̄J̄4
∇LRI1J̄1I2J̄2

+4
(
∇̄J̄4

RI1J̄1LJ̄2

)
∇I2RI3J̄3I4

L

+6RI1J̄1I2
K

(
RI3J̄2I4

LRKJ̄3LJ̄4
+ 2RI3J̄2K

LRI4J̄3LJ̄4

)}
φI1 . . . φI4 φ̄J̄1 . . . φ̄J̄4

=
1

576
KI1···I4J̄1···J̄4

φI1 . . . φI4 φ̄J̄1 . . . φ̄J̄4 . (5.22f)

The relations (5.22a)–(5.22d) appeared earlier in [59]. It is possible to rewrite K(4,4) in a

manifestly real form, but such an expression appears to be much longer than (5.22f).

We should point out that in the literature, there exist closed-form expressions [60] for

the Riemann normal coordinate expansion. It would be very interesting to obtain a similar

expression for the canonical coordinate system.

The above relations hint at the fact that, for m 6= n, the tensor KI1···ImJ̄1···J̄n
should

be a sum of terms each of which is proportional to a (multiple) covariant derivative of the

15This coordinate system was re-discovered by supersymmetry practitioners in the 1980s under the name

normal gauge [56 – 58].
16These results are easily derived by applying the relation KI1I2J̄1J̄2

= RI1J̄1I2J̄2
+ gMN̄ΓM

I1I2
Γ̄N̄

J̄1J̄2
.
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Riemann tensor. In other words,

∇LRI1J̄1I2J̄2
= ∇̄L̄RI1J̄1I2J̄2

= 0 ⇐⇒ K(m,n) = 0 , m 6= n . (5.23)

Indeed, this holds in general.

If one compares the expressions for L(2) and L(3), eqs. (5.19b) and (5.19c), with those

for K(2,2) and K(3,3) above, it is tempting to conclude that

L(n) = K(n,n)(φ → Σ, φ̄ → Σ̄) .

Unfortunately, this does not hold in general, since for n = 4 one finds

L(4) =

{
1

576
KI1···I4J̄1···J̄4

−
1

36

(
∇̄J̄4

RI1J̄1LJ̄2

)
∇I2RI3J̄3I4

L

}
ΣI1 . . . ΣI4Σ̄J̄1 . . . Σ̄J̄4 , (5.24)

compare with (5.22f). However, the correct statement is the following:

L(n) = K(n,n)(φ → Σ, φ̄ → Σ̄) + (∇R)-terms . (5.25)

Here the second term on the right consists of those terms that vanish in the limit (5.13).

Eq. (5.25) is one of the main results of this work.

In deriving (5.24), one has to make use of the expression for GL
(2) that appears in (5.18).

It is

G(2) J̄3
≡ gJ̄3LGL

(2) = GI1...I4 J̄1J̄2;J̄3
ΣI1 . . . ΣI4 Σ̄J̄1Σ̄J̄2

=
1

6

{(
∇I4RI1J̄1I2

L
)
RLJ̄2I3J̄3

−
1

8
KI1...I4 J̄1J̄2J̄3

}
ΣI1 . . . ΣI4 Σ̄J̄1Σ̄J̄2 . (5.26)

More generally, for any term in the series in (5.18), it should hold

G(n) J̄n+1
≡ gJ̄n+1LGL

(n) ∝ K(n+2,n+1)(φ → Σ, φ̄ → Σ̄) + (∇R)-terms . (5.27)

Let us recall that Υ∗(ζ) ≡ Υ∗(ζ; Φ, Φ̄,Σ, Σ̄) denotes the unique solution to the auxiliary

field equations (5.8) under the initial conditions (5.9). We conjecture that Υ∗(ζ) obeys the

following generalised geodesic equation:

d2ΥI
∗(ζ)

dζ2
+ ΓI

JK

(
Υ∗(ζ), Φ̄

)
dΥJ

∗ (ζ)

dζ

dΥK
∗ (ζ)

dζ

= 2

∞∑

p=1

GI
J1...Jp+2 L̄1...L̄p

(Υ∗, Φ̄)
dΥJ1

∗ (ζ)

dζ
. . .

dΥ
Jp+2
∗ (ζ)

dζ
Σ̄L̄1 . . . Σ̄L̄p , (5.28)

and is its unique solution under the same initial conditions. This equation is covariant with

respect to holomorphic reparametrizations of the Kähler manifold. If the curvature tensor

is covariantly constant, eq. (5.28) reduces to the geodesic equation given in [49, 50].

At the moment, we do not know the explicit structure of the derivatives terms in (5.25).

We believe that a more systematic analysis of the invariance under extended supersymmetry

transformations would allow one to determine these terms.
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If the curvature tensor is covariantly constant, (5.13), there occur dramatic simplifica-

tions. In particular, here we obtain

K(φ, φ̄) = gIJ̄ φI φ̄J̄ +

∞∑

n=2

1

(n!)2
KI1···InJ̄1···J̄n

φI1 . . . φInφ̄J̄1 . . . φ̄J̄n ,

L = −gIJ̄ΣIΣ̄J̄ +
∞∑

n=2

(−1)n

(n!)2
KI1···InJ̄1···J̄n

ΣI1 . . . ΣInΣ̄J̄1 . . . Σ̄J̄n . (5.29)

In refs. [51, 27], the sigma-model (5.1) was explicitly ‘solved’ for all Hermitian symmetric

spaces except E7/E6×U(1). The above result allows one to address this case. Still, it would

be very interesting to apply the scheme presented in [27] to the case of E7/E6 × U(1).

6. Back to the superconformal case

For the dynamical system (5.1), we have demonstrated that its description in terms of the

physical superfields (Φ,Σ), eq. (5.11), can be achieved by making use of the power of N = 2

Poincaré supersymmetry, without the need to solve the auxiliary field equations (5.8). Now

we are prepared to turn to the analysis of the general superconformal sigma-model (3.6).

The action (5.1) becomes superconformal upon imposing the homogeneity condi-

tion (3.4), and hence the symmetry group gets enhanced. In particular, the action (5.11)

associated with (3.6) should be invariant under N = 1 superconformal transformations

δΦ = −ξΦ − 2σΦ , δΣ = −ξΣ − 2σ̄Σ (6.1)

and extended supeconformal transformations

δΦ = ρ̄.αD̄
.

αΣ +
1

2

(
D̄.

αρ̄
.

α
)
Σ ,

δΣ = −ραDαΦ −
n

2

(
Dαρα

)
Φ + D̄.

α

{
ρ̄
.

αΥ2(Φ, Φ̄,Σ, Σ̄)

}
, (6.2)

where Υ2(Φ, Φ̄,Σ, Σ̄) is given by eq. (5.18). What are the implications of these addi-

tional symmetries? Actually it can be seen that no additional implications occur. If the

action (5.11) is N = 2 supersymmetric, and the Kähler potential K(Φ, Φ̄) obeys the ho-

mogeneity condition (3.4), the theory is N = 2 superconformal.

While this paper was in the process of writing-up, there appeared a new work in the

archive [61], in which some superconformal aspects of 4D N = 2 projective superspace

were discussed, see also [25].
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A. N -extended superconformal Killing vectors

In the main body of this paper, we have made extensive use of the N = 1 and N = 2

superconformal Killing vectors. Here we collect, following [36, 37], the essential information

about the χ-extended superconformal Killing vectors, specifically for N ≤ 3.

In 4D N -extended superspace R4|4N parametrized by coordinates zA = (xa, θα
i , θ̄i

.

α
),

with i = 1, . . . ,N , an infinitesimal superconformal transformation zA → zA + ξ · zA is

generated by a superconformal Killing vector

ξ = ξ = ξa(z) ∂a + ξα
i (z)Di

α + ξ̄i
.

α
(z) D̄

.

α
i (A.1)

defined to satisfy

[ξ , D̄α̇
i ] ∝ D̄β̇

j , (A.2)

and therefore

D̄
.

α
i ξβ

j = 0 , D̄
.

α
i ξ

.

ββ = 4i ε
.

α
.

β ξβ
i . (A.3)

The spinor covariant derivatives are assumed to obey the anti-commutation relations

{Di
α,Dj

β} = {D̄.

αi, D̄.

βj
} = 0 , {Di

α, D̄.

βj
} = −2i (σc)

α
.

β
∂c . (A.4)

It follows from eqs. (A.2) and (A.3)

[ξ , Di
α] = −(Di

αξβ
j )Dj

β = ωα
βDi

β −
1

N

(
(N − 2)σ + 2σ̄

)
Di

α − Λj
i Dj

α . (A.5)

Here the parameters of ‘local’ Lorentz ω and scale-chiral σ transformations are

ωαβ(z) = −
1

N
Di

(αξβ)i , σ(z) =
1

N (N − 4)

(
1

2
(N − 2)Di

αξα
i − D̄

.

α
i ξ̄i

.

α

)
(A.6)

and turn out to be chiral

D̄
.

α
i ωαβ = 0 , D̄

.

α
i σ = 0 . (A.7)

The parameters Λj
i defined by

Λj
i(z) = −

i

32

(
[Di

α , D̄.

αj] −
1

N
δj

i[Dk
α , D̄.

αk]

)
ξ
.

αα , Λ† = −Λ , tr Λ = 0 (A.8)

correspond to ‘local’ SU(N ) transformations. One can readily check the identity

Dk
αΛj

i = −2

(
δk
j Di

α −
1

N
δi
jD

k
α

)
σ . (A.9)

The explicit expressions for the components ξa(z) and ξα
i (z) of an arbitrary supercon-

formal Killing vector can be found in [25], eq. (3.15).
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